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Let B, be the multivariate Bernstein operator of degree n for a simplex in R®. In
this paper, we show that B, is diagonalisable with the same eigenvalues as the
univariate Bernstein operator, i.e.,

!

) :ﬁnlk k=1,...,n, 1=2">;0>...>m>0,
and we describe the corresponding eigenfuctions and their properties. Since B,
reproduces only the linear polynomials, these are the eigenspace for }.(1”) = 1. For
k>1, the i;c")-eigenspace consists of polynomials of exact degree k, which are
uniquely determined by their leading term. These are described in terms of the
substitution of the barycentric coordinates (for the underlying simplex) into
elementary eigenfunctions. It turns out that there are eigenfunctions of every degree
k which are common to each B,, n>k, for sufficiently large s. The limiting
eigenfunctions and their connection with orthogonal polynomials of several variables
is also considered. © 2002 Elsevier Science (USA)

Key Words: multivariate Bernstein operator; diagonalisation; eigenvalues; eigen-
functions; total positivity; Stirling numbers; Jacobi polynomials; semigroup; quasi-
interpolant.

1. INTRODUCTION

This paper is the multivariate counterpart of Cooper and Waldron
[CWO00], which gave the spectral decomposition of the univariate Bernstein
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operator and applications. Here we show that the multivariate Bernstein
operator B, for a simplex in R® is also diagonalisable, with the same
eigenvalues, namely

w.__no 1
T (= k)R

k=1,...,n, 1=2">00>..50>0 (1.1)

and give an explicit formula for the eigenfunctions. The paper is set out as
follows.

In the second half of this section, we define B,,, establish notation and give
some technical results. The notation used is based on that of de Boor [B87],
which indexes the barycentric coordinates by the vertices they correspond
to, rather than imposing some ordering on them. This leads to a compact
notation which simplifies the calculations and reveals the underlying
geometry.

In Section 2, we give the diagonalisation and describe its
symmetries. Since B, reproduces only the linear polynomials, these give
the eigenspace for 2(1") = 1. For k> 1, the Zi")-eigenspace is no longer one
dimensional, as it is in the univariate case. It consists of polynomials of exact
degree k which are uniquely determined by their leading term, and for which
an explicit formula is provided.

In Section 3, we show that B, f takes a simplified form when f is certain
ridge-type functions. This is used to describe the eigenfunctions of B, in
terms of the substitution of the barycentric coordinates (for the underlying
simplex) into elementary eigenfunctions. It turns out that there are
eigenfunctions of every degree £ which are common to each B,, n>k, for
sufficiently large s.

In Section 4, we show, as in the univariate case, that the eigenfunctions
(with fixed leading term) converge as n — co. We describe these limiting
eigenfunctions and their connection with orthogonal polynomials of several
variables.

In Section 5, we give an interesting result about B, applied to certain
shifted factorials, and some consequences of it.

We conclude with some comments about those aspects of the univariate
theory which have not been extended to the multivariate setting. The
appendix contains a list of the elementary eigenfunctions.

We now give the definitions which will be used throughout.

1.1. Definitions

Let V be a set of s + 1 affinely independent points in R’, i.e., the vertices of
an s-simplex which we denote by 7. Denote by & = (£,),. the corresponding
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barycentric coordinates, i.e., the unique linear polynomials which satisfy

S aw=1 Y &wu=x VxeR.

veV veV

We will use standard multi-index notation with indices from ZK and Z°_, so,
for example,

g=1]&vw. aezl, B =pB-BL BeZ.

velV

The Bernstein operator of degree n for the simplex 7 with vertices V is
defined by

n
Buyf=>_ <a>5“f(va), V1 e C(T), (1.2)
o|=n
o[(yeZK
where
n n! o(v)
= Uy = —vel.
(oc) al(n — |af)! ; |or]
For V = {vy, v1,...,0s}, this can be rewritten as
) 1 n\ L woen—k o 0101+ 0+ o + (n — k)vg
Buyf = Z Z g gk g . ,
=0 =k \ %
“eL (1.3)

If T is the standard simplex in R®, i.e.,
V=1{0,e,...,e} (e; the standard basis vectors for R®),

then (1.3) becomes (cf. [L53:(13), p. 51])

n

B,,f(x) = Z Z (Z)xi“ x;"(l —X]— 7xs)n7kf(%’.“’%)_ (1.4)

k=0 |u=k

It is well known that B, maps onto IT,(R’) the polynomials of degree
nin R’,

Let Sy be the symmetry group of the simplex T with vertices V, i.e., the
group of affine transformations which map 7 onto 7. This is (isomorphic to)
the symmetric group on the s + 1 vertices V since an affine map R° —» R’ is
uniquely determined by its action on s+ 1 affinely independent points. It
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follows from (1.2) that
Buy(fed) = Buyf)ed  VfeC(T), VAeSy. (1.5)

We let Sy act on functions p € C(T') and linear functionals u defined on C(7)
in the usual way, i.e., for 4 € Sy

A-p=pd~, (A p(f)=u(fed) VfeCT).

For ﬁeZK with |f|=k and A >0, define the multivariate shifted
factorial by

(€ =Tl e, G4 = EE — M) —2h) -+ (&, — (Bw) — D),

vel

and the multivariate Stirling numbers of the first kind from the univariate
ones by

S(B,2) =[] SB@,a),  a<p (1.6)

velV

These are related by

& =" S@.wpl ey, vpezl, vh>o, (1.7)

a<p
which follows from the univariate result
pw) ‘
&0 =3 S, o)L O,
a(v)=0
by the calculation

B)
¢ =11 <Z S(pC). a(v))h/“”)_“(”)[Q]?f”)

velV \a(v)=0

> (H S(ﬂ(v),oc(v))h’“”“‘“)[éu]?i(v)>

a<p \veV

= > S(B, ke

a<f
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A special case of Theorem 5.1 of Section 5 is that
By (&, = 4", 1Bl =k<n,

where /15{”) are the eigenvalues defined by (1.1).
For o e ZK with a(vg) = 0 and h >0, let 4} be the multivariate difference
operator defined by

DS (Z)(l)'”'f(-w > ﬁ(v)(v—uO)>,

B<u velV
B(o)=0
pez”,

a\ ol
g) " B pyr (15

Let ¢, € ZK be the multi-index with

{ 1, w=u,
e,(w) =

0 otherwise.

LEMMA 1.1. Letae ZJVr with a(vo) = 0 and h > 0. Then, 4}, satisfies
e, _ o+f 4o p
Ay S = fC+hv—v0) - f, Ao | = A4 Ay /) (1.9)

and

B! s
REY 7, a<p,
Ax e = B ' (1.10)

0 otherwise.

Proof. From definition (1.8), we have

Ay = S+ h(v =) — f.

Since the first-order differences 4, and 4;" commute, to prove the second
part of (1.9) it is sufficient to show

A =11 A A5t (1.11)

velV
) a(v) times



108 S. COOPER AND S. WALDRON

by induction on |«|. For |¢] = 0, we have 4} f = f. Now suppose a(w) > 0,
for some w € V, then by the inductive hypothesis

e .. ge _ few fo—ew
H Ah,vo Ah,b‘o f _Ah,voAh,b‘o f
vel S————

vF# Uy a(v) times

o —éey e —
=4, > ( ; )(—n“ o=

B<a—e,
B(v9)=0
pez’,
X f<~ +hY B - vo)>
velV
o—e
_ L P Ca
2 (ﬁ e ) v
Bw)>0
x f ( +hY B — vo)>
velV
_ Z <O€ — €&y > (7 1)\9{7€w7/}|
< g
Pw)<o(w)
x f ( +hY B — w))
velV
= AZ,Unf’

which completes the induction.
For distinct points vy, v, w € V, it can easily be shown that

6v(' + h(l) - UO)) = év + h, éw( + h(l) - UO)) = 6wa

from which it follows that, for v+#uvy,

A5

h,vo

s | BOWRIEL T w=,
[l ) = {0, ko, (1.12)

Substituting (1.12) into (1.11) then gives (1.10). &
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2. THE DIAGONALISATION

Our diagonalisation is based on the representation of B, f in terms of
the basis

Boy =& 0 el a(vo) =0,lu|<n}, wvoeV 2.1)

for IT,(R®). For the standard simplex and vy = 0 this is the monomials.
The matrix representation of B,, with respect to 4%, 1is block
triangular. From this, we obtain the eigenvalues and a basis of
eigenfunctions.

LemMa 2.1 (Block Triangular Form for B, ). Fix v € V. Then

Buyf = Z (Z) A )y S(00)  Vfe ), (2.2)

lo|<n

o(vg)=0
v

oel’,

and, in particular,

By _ () B I’l_' S(/)), OC) o 14
B =il N oyt el i @
o(vg)=0

Proof. In definition (1.2), split o = y + a(vg)e,, to obtain

Burf= Y (:)afgo-mf<w)_

[yl<n

7(9)=0
v

vel’,

Since ), &, = 1, the multinomial theorem gives

n—|

n i’l—|’})|
Gl=lr=-2 4 =D ( )(—U’“éﬂ.
vy per \ P

vE Bluo)=0

pez!,
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Hence, we obtain

Bn,Vf: Z Z (”) (”l_|V|>(_1)|ﬂé}'+ﬁ
fl<n B<n—hl \7 p

7(v0)=0  B(vg)=0

" f<|"/lv~,v + (n — IVI)vo>

n

- ¥ <a>é“c1 W),

el <n
Cx(l/‘n):()

<Z>c?/n(f>:=2 2 2 (Z)(”;'"")(—l)"‘
= hplsn IBl<n—ly

P(00)=0 B(v0)=0

f(lylvy +(n— Ivl)vo)

n

where

This gives (2.2), via the simplification

a'(n od(n — Jo)! n! (=Dt e
A== Z A DL~ Blin — D
2(v0)=0

1
(0 2001, b))

- ¥ ()( 1)'“'f<vo+ Z“/(U)(UUO)>

veV

= A7 00 S (@0)-
By (1.10) and (1.7),
Ay, =4, (Z S(B, v)h'”[a";;> =SB4 (€T

V<P V<P

= D Sy f‘y h(g

a<y<p ( )
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Since

e 1, =a,
<], °‘<vo)—{0 =

otherwise,

this implies

(A2, EP)(wo) =

{ aS(B, )i, 2 <p, 04

otherwise.

Hence, substituting /' = &/, |p|<n, into (2.2), and using (2.4), gives

B = Y <a>6 (4 )00

e <n
o(vg)=0

N
= 2 - |a|)'“5(ﬁ°‘)<)’

a<p
o(v9)=0

which can be rewritten as (2.3). 1

Let p; denote the leading term of the polynomial p, i.e., the unique
homogeneous polynomial that satisfies

deg(p — py) <deg(p).

Denote by I10 +(R%) the homogeneous polynomials of degree k.

THEOREM 2.2 (Diagonalisation of B, ). The multivariate Bernstein
operator B,y is diagonalisable, with the same eigenvalues as the univariate
Bernstein operator, i.e.,

;u(n) = n! i
k (n — k) nk

k:l,...,l’l, 1:}”(ln)>/1(2n)>"'>;‘f1n)>0~

Let P,E”,Z denote the igc")-eigenspace. Then,
P =IL(R),  Vn 2.5)
For k>1, P("I), consists of polynomials of exact degree k, which are unl?uely

determmed by their leadmg term, i.e. Pk IS lsomorphlc to IT° A(RY) via Pk v
Hk(IRS) p— pr. Let pf , deg(f) = k<n, denote the /lk" ezgenfunctlon with
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leading term f;. Then (for vy € V fixed), a basis for P,E"Il is given by

P peZl o) =01pl=k  pY =) c@wpn  (26)

a<p
where the coefficients can be calculated using the recurrence formula
(B, p.n) =1,
c(a, f,n) =

e s
! 3 L Sy X

[n— o)) — nlb= Sz, nl

Let %2"?, denote the dual space to P,gq;, ie., those pespan{fi f(v,):|e| =
n} for which

pP) =10}, Vi#Ek (G =1,...,n).

The spaces P,E") and ./%,((") are Sy-invariant, ie., they have the symmetry
properties

Sy PP =P", Sy =

Proof. Since B,y maps onto IT,(R%), it follows from (2.2) that %,, of
(2.1) is a basis for I1,(R*). We now show that the linear operator defined by
1 : p— p; takes %, to another basis for IT,(R°), i.e., the homogeneous
polynomials

Bt = J (&) :BeZ), Bwo) = 0,18 = k} (2.8)
k=0

are linearly independent. Suppose that
Yo apdy =0 Y @ =p  Apell (R
Blvo)=0 B(vo)=0

Then for 6 ZK with [0] = k and d(vy) = 0, (1.7) and (1.10) give

Moo= D ap > Sl | = a5 =0,
\Bl=k a<p
P(vo)=0

which proves the asserted linear independence.
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The linear eigenspace (2.5) is well known. For k£ > 1, we will use (2.2) to
show that B,y has )Lﬁ{")—eigenfunctions of the form

P =3 co b =&+ cwpmE e + MR,

a<f a<f
1Bl =k,  PB(vo) = 0.
Since 1 maps these to a basis for HO(RS) they are the basis of a subspace of
P,E",Z which is isomorphic to I7¢ +(RY) (via pr pp). The dimension count
dim(I1,(R%)) + Z dim(ITY(R*)) = dim(IT,,(R")),
k=2

shows this subspace is all of P,gf’&, and so B,y is diagonalisable.
We now show such eigenfunctions exist. Substituting

f=>"clpmé,  |Bl=k B)=0 2.9)

a<f

into the eigenfunction equation B, y(f) = /12") f, and expanding using (2.3)
gives

3" e BmBuAE) = Y e fon) Z(S(“”’“) S e B

|
r<p V<P ot a<p

Equating coefficients of the linearly independent functions & in the above
gives

Ac(or, Bon) = Z L )

5 1 (n— o))
|
_;ngfc(a,ﬁ,nn ;;ﬁ o (:(”'3), (. B (2.10)

For « = f, (2.10) is satisfied for any choice of (S, f,n). Suppose that
c(B, p,n) = 1. For a<f, (2.10) can be rewritten as

1 n! S(y,oz)
C(OC, ﬁa n) =T Tl (%ﬁ n)
=g ; g 1 (= Jo)!

nlfl S(/
= — -z "(V,/f n).
I M;Sﬁ

This recursively defines c(a, ff,n), a<f from c(f,p,n), and hence an
eigenfunction of the form (2.9) exists and is given by (2.7).
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For p eP,g’; and 4 € Sy, (1.5) gives

Buy(pod) = (Buy p)od = (" p)ed = 2 (p-A),

so that ped € P), and P) is Sy-invariant. Similarly, for pe.#{") and
Ae SV,

A WP = p(PPed) = w(P)) = {0}, j#k G=1,....n),

and hence /%2”2, is Sy-invariant. 1

3. ELEMENTARY EIGENFUNCTIONS

If p,((”) is the i}cn)-eigenfunction (k > 1) of the univariate Bernstein operator
for the standard simplex 7 = [0, 1], then it can be shown that the s+ 1
polynomials

Pl eV

are i}c”)-eigenfunctions of B,y (which are linearly independent for s > 1).

The above is a special case of the main result of this section, which
effectively says that each eigenfunction of B,y is also an eigenfunction of all
Bernstein operators for higher dimensional simplices when interpreted
appropriately. This we describe in terms of the substitution of barycentric
coordinates into the so-called ‘elementary’ eigenfunctions. The result is
based on the following generalisation of the affine change of variables (1.5).

Let Bﬁ'fd denote the Bernstein operator for Sy, the standard simplex in RY,
ie.,

Sy = {(xl,...,xd)eRd:xl,...,deO,xl 4+t xg< 1}

LEmMma 3.1 (B, Applied to Multi-Ridge Functions). LetA4:R’ — R? be
an affine map onto R, with W = AV. Then,

Bn,V(gOA) = (Bn,Wg)OA vQ € C(AT) (31)
In particular, for d <s distinct points vy,...,04 € V
d
Buy(9oCops 1 &o)) = B )Gy n &) VgeCSa),  (32)

where &, are the V-barycentric coordinates, and (,,, ..., &,,) is the affine map

R — R x> (&, (%), ..., &, ().
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Proof. Since 4 is affine, W = AV is the set of vertices of a simplex in R,
and 4 maps {v,:0€Z,|o| =n} onto {wp:BeZ,|pl=n}. Let &= (¢,)
denote the V-barycentric coordinates, and #n = (y,,) the W-barycentric
coordinates. Then,

Buy(gd) =3 (Z)é“g(flva)z > (Z)é“g(w)

|oc}=n |Bl=n |ot|=n
weZ}, Bez;, Avy=wy
ueZ;,

and

Buwg)d= Y (;) (n4) g(wp).

I,”’\:ﬂ+
pez,,

Hence to prove (3.1), it is sufficient to show that

> <Z>¢“=<’;>nm, VBeZy. Ifl=n (3

lot|=n
Avq:W/g
weZ;,

We now expand the RHS of (3.3) in terms of the basis {&*: o € ZZ, lo] = n}
for IT,(R"). Observe that 7,04 is the affine map R* —» R with

ey =] A v
o V) = vev,
T 0 otherwise,
ie.,
Med= Y &,
velV
Av=w
so that
Bw)
i = (H na<w>)oA: [T o =1 | ¥ <
welW weW welW velV

Av=w

By the multinomial theorem,
Bw)

" pow)
sa [y s - x o (M)
6]=B(w)

velV vefv : Av=w}
Av=w supp d < {v : Adv=w}
SeZ;,
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and so we obtain

nfod = (n ) E < > &
(ﬁ) ﬁ wl}V |0]=p(w) 5

supp 6 < {v:Av=w}
07},

= > (3.4)

|od}=n
"
oel),

where the coefficients ¢, can be determined by expanding the product. It
remains to show that c, equals the coefficient of &* in LHS of (3.3), i.e.,

n
( ), AU% = wg,
Cy = o

0 otherwise.

Since V' is the disjoint union |J, ., {v:A4v = w}, the coefficient ¢, is zero
unless

> av) = Bw),

velV
Av=w

which implies

T DT S DL LI

veV weW  velV weW
Av=w

In this case, suppa < {v: v = w}, so

([ poo \ _mp [
o <ﬁ> &EV <a|{u:Av—w}> ﬁ' ol <O€>,

and we conclude (3.3) holds.
Since each ¢, is affine, the map 4 = (¢,,...,¢&,,) is affine. From

€, V=10,
Av = . veVl,
0 otherwise,
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it follows that
—{Av:veV} ={0,e,...,eq} = AT = Sy,

ie., By = BE}J, and (3.2) is proved. 1

DErFINITION. For k > 1, the d-variate elementary 2,((”)-eigenfunction

P RS R kmhitetkesn ki k>

.....

is defined to be the ii")-eigenfunction of de with leading term x%' - - xk.

These can be computed via

N G NE Y ) N = (ST ) (3.5)
a<f
ez

where the coefficients are determined by recurrence (2.7). This notation
1s con51stent with that of [CWO00, (2.6)], where the /1(" -eigenfunction
pk is precisely the wunivariate -elementary elgenfunctlon defined
above. Observe that changing the ordering of kj,...,k; leads to
essentially the same elementary -eigenfunction (the coordinates are
just reordered).

TuEOREM 3.2 (Elementary Eigenfunctions). Let vy,...,v; be d<s+ 1
distinct points in V. Then,

P G &) = oG G RS R

..........

) (n)

is the 1, -eigenfunction of B,y with leading term (ff; ---éﬁ;’)T, ie.,

PE = P Gy Bi= (R k),

,,,,,

This has a factor of &,,...,¢,,. Indeed, when ki, ..., ky>1, kyy ==
ka=1

P G C) =G G u B0 g e aR™),  (3.6)

where

g(x) _q<'”(x) > a@.Bd.ny’,  p=Ch-1.. k=1 (3.7

o<p
oez"
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can be calculated from a(ﬁ, ﬁ, d,n) =1, and for 6 < ﬁ the recurrence
B

a8, B d,n) = o
[n—10| =dly " —n

x>
5<,’§[§
yeZ’}

SO+, Do+ I, 1)
Al

a(y, B.d,m).  (3.8)

Moreover, all eigenfunctions of degree =2 are zero at each of the vertices V,
and

(xl)

— 1

Proof. By Lemma 3.1 and the deﬁmtlon of elementary eigenfunctions
Bur (P 4 oG &) = BE B YolEprs s E)

,,,,,,,,,,

=GB )G &)

,,,,,

p/((n_)ljl(xl,x2) = 3.9

.....

its leading term is (5’;; "'Eg)r

For a<(1,...,1), i.e., o; = 0 for some i, one has S(y,«) =0, and so by
(2.7) the coefficients in (3.5) satisfy

c(o, f,n) =0, a<(l,...,1).

This allows us to divide (3.5) by x(I»]) to obtain (3.6), with

(1)
Pidt/®) a—(1,...1)
- a’ Sh)xT e
g(x) = D E c(a, B, n)x

""" (1,...D<a<p
an‘i

= > cpp D

—(1,..D<($.0.....0)

d
ael’,

= > a8, p.d.nx’,
o<p
oez”}
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where = (ki — 1,...,kn — 1), i.e., B=(5,0,...,0)+(1,...,1), and
a(d, ,d,n) = ¢((3,0,...,0) + (1,..., 1), B,n).
From recurrence (2.7), we then obtain
a(B.p.d,n) = c(B, p.n) = 1,
and for ¢ <[§

nk

[n— 18] — d]’]‘*l(ilfd — pk—lol—d

a(d, B, d,n) =

3, (3,0,...,0) +1(L,.... 1)
P ¢

(7, B, n).

(0.0, 0+ (L ) <7< B

Making the substitution 7 =(y,0,...,0)+(1,...,1) in the summation
above gives

S((y,0,...,DI+](1,...,1),(,0,...,0+|(1,...,1))
D

n‘"/Hd

o<y<p
ye?’}

xc((7,0,...,00+(1,...,1),8,n)

= M+d a(ys ﬁa dy n)>
. n
o<y<p
yeZy

and so we obtain

. pk—d
0,p,d,n) =
a0, B.d,n) [n—10| — d]llf*\é\fd _ pk—10l-d
SGI+I,..., Do+ (,.... 1) 5
Z i’llyl a(% ﬁ: d7 f’l),
(5<",'$B
yez;

which is (3.8).
In [CW00, (2.11)], it was shown that p{"(1) = 0,k>2. This together with
the fact

1, w=u,
gl/(w) = {

0 otherwise
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implies all eigenfunctions (3.6) of degree >2 are zero at the vertices
vel. 1

.....

univariate linear polynomial g(x) = x + a(0, 1,k — 1,n), where

_ n! S, 1., 0,0, 1) 1
a0 LA L = T ! T TU—1y
Thus,
) 1
p2,1,...,1(£t‘1’ R ékal) = éﬂ] e é%l (évl - (k — 1))

isa i,i") -eigenfunction of B, whenever 2<k<s + 2.

Since this function is independent of n, it follows that there are
eigenfuctions of degree k& which are shared by all B,, k>n, for sufficiently
large s.

ExamPLE 2. For pg”l)l we have f=2(d=4k—2), and g is the
univariate quadratic polynomial g(x) = x> + a(1,2,k — 2,n)x + a(0,2,k — 2,
n), where

2
a(1,2,k — 2,n) = A S(3;2)= 3
m—1—(k-2)—n n *k—1)
and
n S, 1) -3 SG,1)
2,k—2,n) = : :
a(0,2,k —2,n) [n(kz)]fnz{ n (k—1) 2 }
B n? -3 +i
C 2nk+3n+k2—=3k+2\nk—1) n
B 3n—k+1
C (Qnk —3n — k2 + 3k = 2)(k — 1)
Thus,

3 n—k+1
2 _ £
So oy (5“1 =D nk—3n— K+ 3k — 2k — 1)>

1sa i,(c")-eigenfunction of B,y whenever 3<k<s+ 3.
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ExampLE 3. For pggll we have f=(1,1)(d=k—2), and ¢
is the bivariate quadratic polynomial g(x) = x1x2 + ¢1(x1 + x2) + ¢,
where

c1 =a((1,0), B,k — 2,n) = a((0,1), B,k — 2, n)

B n2 sy 1
T m—k+D)—n n2  (k—1)

and

¢ =a((0,0), .k — 2,n) =

n? {2S(2,1) —1 +_9((2,2),(1,1))}
n— (k—2); — n? n (k—1) n?

B 2n—k+1
CQuk—=3n—k2+3k-2)(k—1)

Thus, for k>4,

X1 +x2 2n—k+1 )

() e _
P221,.10) =3 X (xm G—1) @k —n K13k -k

A list of the elementary eigenfunctions up to degree 5 is provided in the
appendix.

4. LIMITING EIGENFUNCTIONS
Here we show that the A,(C")-eigenfunctions p(f") converge as n — 00
to a limit pjf-. Moreover, the limit of factor (3.7) of an elementary
eigenfunction is a multivariate Jacobi polynomial. This extends
Theorems 4.1 and 4.5 of [CWO00] to the multivariate setting. Let
e; be the ith unit vector in R", and (f), the multivariate shifted
factorial

(ﬂ)z = (ﬁl)al e (ﬁd)ydﬂ (ﬁi)(x,- = ﬁi(ﬁi + 1) e (ﬁz + o — 1)7
pe IR”, o e Zi,
Wlth (2)(5 = (2)5] s (2)5”‘.

THEOREM 4.1 (Limiting Eigenfunctions). Express &f, pe ZL Bl =k in
the form

F=gl i k=kttke ko ke > 1 k= =kg=1,

vg°
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where vy, ...,vq are d<s + 1 distinct points in V. Then the coefficients of (3.7)
satisfy

lim a(d, B,d,n) = a*(5,p,d)

il k!
= (—1)k7d(k+ldi_1)k_d(k +d =1y
(=P 1
2.5 4.1)

Thus, pg,? converges uniformly on T to p’é‘,f =&y &9y, ., Ey,), where
9@ = g5 )= Y dGh )2, p=la 1. k=D (42)
o<p
oeZ"

Proof. First, we prove by strong induction on |B—5| that
a(d,B,d,n) converges to a limit a*(5,8,d) as n — oo, which satisfies
the recurrence

A —1 m
*5,8,d) = —
cOhD W*&%+d+9%ﬂ)‘g;
Si+1<ki—1
; + D0 +2)a* (G + e, f,d), <P (4.3)

Clearly lim,_~ a(ﬁ, ﬁ, d,n) = 1, which begins the induction. Suppose <B.
Since

[n — |(S| — d]llﬁié‘ _ n|ﬁ*5\ :%m o 5|(1 k—d— |5|)nu;75‘71
+ lower order powers of n,

all the coefficients

nlf=

SO (L D6 (L 1)
[n— |8] — d]F =2 — pif-ol

of a(y, ﬁ, d,n) in (3.8) converge to 0 as n — 00, except those fory = 0 + ¢; Sﬁ
which converge to

S@O+e+1,...,1),0+1,...,1) 0; + D + 2)

1B —ol(1 —k —d — o)) 1B — 3tk +d + 18] — 1))
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Using this and the inductive hypothesis, we can take the limit of (3.8) to
obtain
lim a(3, B,d,n) = a*(8, B, d),

n—oo

which satisfies (4.3).

The limits a*(3, B, d) are uniquely determined by a*(8, B,d) = 1 and (4.3).
We now show that the a* defined in (4.1) satisfies these, and so gives the
desired limits. The case 6 = B is trivial, and so it suffices to show

(—B) 1
), o

b(3,B.d) = (k+d — 1)

satisfies recurrence (4.3). For ¢ <ﬁ, we compute

Z (0i + 1)(8: + 2)b(S + ei, f. )

=1
O+ 1<k—1

(_3)5+e; 1

= D @G+ DO+ +d - l)me,wm

=—(k+d~— 1)|5|((2€;)55|(k+d+|5|—1) Z B — o
(),+l<ﬁl

= —b(5,B,d) (k+d+15| — DI — 9|

as required. Since the sequence p ﬁ is contained in the finite-dimensional
space Il;, it converges to p,;er in any norm, and in particular
uniformly. 1

Let P, denote the space of limiting eigenfunctions, i.e.,

Piy =IR), Py =span{ply:feZl,fvo) =0,10l=k}, k>1,

which is Sy-invariant. It follows immediately that each sequence
of eigenfunctions (") , fre HO([RS) converges as n — 00 to some
Py €FLy.

The Lauricella function F = Fy (see, e.g., [E76, Chap. 2]) with arguments ¢
a scalar, and f,7,x vectors from R? (or R") is defined by

F(c, B;7;%) = Z()M(ﬁ) ceR, By,xeR

EZd
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THEOREM 4.2 (Identification of pé”) The function g of (4.2) can be
expressed as

* _(_1\k—d kil k! _”.“. Ay
gB,d(x)—( 1) 7(]{4_61_ Dy dF(k—i—d B;2;x), 2:=(2,...,2).

Proof. From (4.1), (4.2) and the definition of F, we have

% _ —a Kl k! (- ﬂ)ax
9549 =D (k+d— 1), Eg e+ d= D (2); o
a‘\eZ”’
o k—d kalecky! 15
=(-1) T d Dy dF(k+d B:2;x).

Define  d-vectors  f = ($,0,...,0), |fl=k—d, x:=(l,...,1) and
&=y, &) Then,

Flk+d—1,-B;3C,. &) = F(Bl + Ikl + (d = 1), =B+ 1,E). &

In [WOI1] it is shown that the factor g(¢,,,...,¢, ), d=>2 of p * 1s the
(multivariate) Jacobi polynomial of degree k —d for the snnplex with
vertices {vl,.. ,v0qy and weight ¢, ---¢, which has leading term

(é{f;il éy:: )T

ExampLE 1. Consider the univariate case 7 =S| =][0,1]. Here the
barycentric coordinates are {y(x) = 1 —x and ¢;(x) = x. For éﬁ(x) = x*, we
haved=m=1, f =k — 1, giving

k!

pE) =x(=1)* IKF(/C 1 —k;2;x)
_ (- 1RGE - D! .
= =D g gy il — Rk 20,

Similarly, the leading term of x*~'(1 — x) is —x*. So taking k; =k — 1, ky =
I, m=1,d=2, f=k—2 gives

2 (k—=1)!
PEx) = —x(1 —x)(—1) . 2F(k+1 2 —k;2:x)
=x(x — 1)(— 1)"“" D! Fi(2—kk+1;2;x),

k-2,
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and so we have the result of [CW00, Theorem 4.5] that

I(F — )
k\(k 2).x(x — PR - 1), k=2, (4.4)

pix) = e

where P;l’l) are the (univariate) Jacobi polynomials which are

orthogonal with respect to the weight (1 —¢)(1 +¢) on the interval
te[-1,1].

ExaMmpLE 2. For each py, 4, d=2,
sk
Py b1 Xa1, L= X1 — - = xg)
(X150 Xg_1) >
Xy xg— (L= xp — - —xq-1)

is a Jacobi polynomial of degree k—d for S, ; with weight
xpexgo (1 —xp — - —x4-1).

5. B,y APPLIED TO SHIFTED FACTORIALS

The following result is of independent interest. In particular, it shows
that

Buy(El,) =2, 1Bl =k<n, (5.1)

which can be used to give an alternative proof of the diagonalisation
of B,,,’V.

THEOREM 5.1 (B, Applied to Shifted Factorials). Recall for f§ € ZK with
Ipl = k<n,

e, =TT a(e ) (6-2) (& -2 em.

velV

Then,

n—k. —%%,;)) Yge C(T), (5.2)

By (&l},9) = 4" Boiy (g(

where the Bernstein polynomials in (5.2) depend only on the values

{g(vy): o€ ZZ, o] = n, =P} (5.3)
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In particular, taking g = 1 in (5.2) gives (5.1). It can also be shown that

n—k k n—k k
Bnk,V<g . '_;Uﬁ)):(Bnk,Wg)C’( T >,

k. k
Ty Sy (5.4)
n

W =

n

Proof. Since v, is an affine combination of the points in V'

) =Y e =20 ezl g
wel
and we have

(@ e =1 %’”(“@n‘ 1) <°‘<v>n— 2) (M)

velV

. (5.9)
0 otherwise.

OC'/(O(_ﬁ)' OCZﬁ,
nk

This implies B, V([é]l/ng) depends only on (5.3). For a=pf, |¢|=n

oy =

Aok (0 PO koo fer_nck, Lk

velV veV velV

and hence by (5.5), we obtain

n! 1 n—k n—k k
_ _#B a—p _ =
=G nki aﬁgﬂ}{(fx B ﬁ)é g( Uap nUﬁ)

Applying (3.1) with 4 := 2=k —kp, " oives (5.4). B

LetV, = {v,:0€ ZZ, || = n}, then Theorem 5.1 relates the support of the
mesh function f1;, to factors of B,(f).
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COROLLARY 5.2. Choose [ € ZK with || = k<n, and define
V= {v, € Vy:a= ).
Then the following are equivalent:
supp(/f1y,) = Vg < [E1,1(/1y) < EBuy(f) VS e C(T).

When this holds

R I e I s
Proof. From (5.5), we have
V= o, € Vo ], 00 203,
and so
(21 l(f1y) <= £(22) = 0, Vo, € iV = supp(fly) < V.
By Theorem 5.1,
(€11 <> 1 = (&l (T
< Bu(f) = anl/,,(f/ )

< B,y (f) = )ngn)6ﬁ(Bn7k,W(f/[€]f/n))o (n ; - )

n

Now suppose that éﬂan,V(f), then

Buy(N/E =3 (Z)é“-ﬂfw € I, () = f(v,) = 0, Ve — 0

lo|=n

= supp fly, = V3. 1

6. CONCLUDING REMARKS

We conclude with some comments about those parts of [CW00] which
have not been generalised here.

The common zeros of the eigenspaces P,i",l do not have the rich structure
of the univariate situation (k£ real zeros in [0, 1] with estimates on their
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location). Indeed, by considering the factored form of elementary
vertices V.
By choosing a basis of eigenfunctions for B, y, say that of (2.6) with

P = pgﬁ) , one can write down a diagonal form

Buvf = 4" > PPl Vfed®), (6.1)
k=0 o=k
o{(lio):()

where the dual functionals u e ,/%,(C”I), can be found explicitly by solving the

linear system obtained from
wO(p") = 0up Ve .

None of the formula so obtained are nice enough to be worth recording.
Recent results of [WXO01] using (tight) frames to represent Jacobi
polynomials on a simplex indicate that it might be more profitable to
consider a redundant, but more symmetric, representation of the form

Buyf=>_ "> pPu(f)  Vfed(),
k=0

lo|=k

where the inner sum involves all of the Sy-invariant spanning set {p{ : o e
7" o) = k}.

In [CWOO0] it was shown that dual functionals such as u in (6.1) have a
limit as n — oo (as functionals on the polynomials). The argument given
relied on the fact that dividing p,({"), k=2 by the product of the barycentric
coordinates (for the interval) gave a sequence of Jacobi polynomials for
which an orthogonal expansion could be used. In the multivariate case, this
is no longer possible (not all eigenfunctions are divisable by each barycentric
coordinate). It is believed that such limits do exist, and that they might be
found by an appropriate orthogonal expansion (possibly involving Sobolev
orthogonality).

There has been some work on iterates of the bivariate Bernstein operator
by Ping Li [LiP87] and Fa Lai Chen and Yu Yu Feng [CF93] generalising
the methods of [KR67] (see the comments in [CW00, Sect. 5]). By setting the
eigenvalues in (6.1) to 1 we obtain, similarly to the univariate case, the
operator

n

L f=Y% Y. pPdf)  VfeCT)

k=0 lo|=k
a(v9)=0
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of Lagrange interpolation from II, at the ‘simplex points’ {v, : |«| = n}. The
classes of Bernstein quasi-interpolant operators proposed in [CWO00] can
then be defined in the obvious way. The eigenstructure of the multivariate
Kantorovich operator can be deduced in the same way as in the univariate
case, see, e.g., [LiS96] (and references therein) for a discussion of the
properties of this operator.

APPENDIX.

List of the elementary eigenfunctions for k =2,...,5

n!
(n — 2)n?

) =x1(x - 1),
P(ll?f(x) = X1X2.

. (n
Degree 2, i.e., /12) =

n!
(n—3)n™

AP0) = x1(x — 1/2)(x — 1),

PYNE) = x0( — 1/2),

: ()
Degree 3, ie., A3 =

prf,l(x) = X1X2X3.

n!

Degree 4, ie., /=" .
& C T =

n n—1
p‘(‘)(x) =x1(x — 1)<xf — X +m>,

n n—1
P00 =i (o -+ £ ).

() = x1x2 | x1x flx flx +ﬂ
V2% 7121231 323(511—6)’
P () = xixnaxs(e — 1/3),

p(lr,ll),l,l(x) = X1X2X3X4.

n) n!

Degree 5,i.e., A5 = W:
n—>5)n
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n I’l*l
Pg )(x) =x100 — 1/2)(x1 — 1)<x% — X +m>,

n n— 1
( 1)(x) = x1x2(x1 — 1/2) (xl X1 +m>,

” 1 3 3(n-2)
Pg %(x) =X1X2 (xfxz - Zx% - lexz + 2(7n——12)x1

+ 3n — o n—2

4Tn—12)"° 4Tn—12))°
(x) xoxa [ 2 Ex +ﬂ
P311x = X1X2X3 | X| — 1 4(7n — 12) 5

") (x) = x1x0x xx—lx —lx —l—i
Prp (X)) = X1X2X3 | X1X2 41 42 2n—12))°

pé"f 1, () = x1x0x3x4(x1 — 1/4),

(n) _
P, 1(x) = X1X2X3X4X5.

Formule for the elementary eigenfunctions of degree k

1(x) = X1 X,

.....

1
p2,1,__.,1(x) = X1 X1 | X1 — m )

(1) (X) =xi---x X2 - 3 X1+ k]
3, 1) =X P\ T k- Tk —3n—kR +3%k—2)k—1))°

() x1+x2 2n—k+1
X) =x1 - xpo [ X100 —
JZX RN 1 k=2| A142 k=1 Quk—-3n—-kK+3k-2)k-1))’
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